RADIATION OF A BED OF COARSE ALUMINA PARTICLES

Yu. A. Popov UDC 536.3

Spectral and integral emissivity is calculated of a semiinfinite bed of alumina particles with
diameters up to 1 mm which are at high temperatures.

Coarse (p = 27r/A > 1) alumina particles are often used as heat carriers in a boiling bed. To calculate
the emissivity of such a bed it is assumed by us that the radiation intensity of scatter on the set of all particles
in a small volume of the medium can be represented as a superposition of radiation intensities scattered by
the individual particles of this volume. Under these assumptions density fluctuations have no effect on the
emissivity for a semiinfinite bed. In industrial plants a boiling bed can in the majority of cases be considered
as semiinfinite,

1. The problem will be solved in the diffusion approximation, which is equivalent to the R-1 approxima-
tion [1]. The transport of heat radiation in a bed was considered in [2] in the diffusion approximation. The
solution for the emissivity of a semiinfinite bed was given by
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The same result is obtained under the assumption (2) in the DR-1 approximation [3] or equivalently in the first
approximation of the method of moments [4]. In Table 1 the emissivity as calculated in the diffusion approxi-
mation is compared with the exact solution for isotropic scattering [5]. For y = 0.8 the agreement is satis-
factory. In our case the condition v = 0.8 is satisfied.

2. The alumina refraction index m = n—in was measured at high temperatures by Gryvnak and Burch
[6]. Their results were used in [7] to compute the attenuation and absorption coefficients by using the Mie
theory for particles with radius r = 10 u, The table of alumina optical constants given in [7] was used in the
present article. An ALGOL program for an electronic computer was prepared by the author for the coeffi-~
cients of attenuation, scattering, absorption, and the mean cosine §I in accordance with the theory. Deirmend-
jian's recommendations in [8] were taken into account when preparing the program. The computations were
carried out on the Minsk-22 electronic computer up to the values of p =190, Their accuracy is not sufficient
for p > 180in view of the error accumulation in the computations by recurrence relation of the imaginary part
of circular functions. In practical applications one often has p > 200.

For alumina particles with a diameter d < 10°p and 0.5 <A =<5pata temperature t <2000°C one has
the inequality

4pn < 1. 4
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TABLE 1. Emissivity of Semiinfinite Bed aln)
for Spherical Scattering Indicatrix
v g, by Exact value of &y ” /
i

0,8 0,683 0,6581 ; |

0,9 0,53 0,5130 | l

0,95 0,411 0,3088 o 2 4 6 B n

1,00 0 0 '

Fig. 1. Function “(n)’

TABLE 2. Dimensionless Coefficients of Attenuation K, Absorption
Kp, and Mean Cosine [ of the Scattering Angle

m=1,8—il0"¢ m=1t,8—{10"5 m=1,8--{10"¢

—— — [ —"
p K KA m K KA n K i KA m

20, |2,137| 0,882(—2) 10,700 |2,136| 0,893(—3) 10,699 |2,136| 0,893(—4) 10,699
10 |2.096| 0,168(—1) |0,722 2,095 0,170(—2) [0,720|2,095| 0,169(—3) {0,720
60 [2.110] 0,279(—1) |0,707|2,110| 0,285(—2) 10,702|2,110| 0,235(—3) |0,702
80 12.096| 0.388(—1) |0,706!2,096 | 0,406(—2) 0,698]2.096  0,408(—3) |0,698
100 |2.067| 0,406(—1) |0.743 2,065 | 0,417(—2) (0,737 2,065 0,419(—3) !0,736
120 {0,076 0,470}4) 0,761 |2,073| 0.503(—2) |0,755|2,072| 0,506(—3) | 0,754
140 |2.083| 0.507(—1) |0,762 2,082 0,522(—2) [6,756|2,082| 6,523(—3) |0,755
160 {2.092| 0.635(—1) |0.,753 |2.094 | 0,798(—9) 10,743 12,093| 0,831(—3) |0,742
180 |2.085| 0.673(—1) |0.753[2,086 | 0,702(—2) 10,743|2,086| 0,705(—3) |0,742

Such particles are called almost-transparent by us. For soft (lm—1| «1) and almost-transparent particles
it follows from the Hulst formula for the absorption coefficient [9] that

8
KA:'— ? AP (5)

In a more general case, if the condition () holds, one can write
K. — 8
AT 3 a(m, p) »p. (6)

(One takes one term in the expansion into a Taylor series of the dimensionless absorption coefficient in the
powers of np.) It follows from the concepts of geometric-optics that for coarse and almost-transparent par-
ticles, K, is proportional to the particle radius, that is, the value of @ is independent of p. If ® <n (which
is true for alumina), then a is a function of only the refraction coefficient:

K,= % a(n) %p. (7)

The shape of this function obtained by averaging the computation results in accordance with the Mie theory is
shown in Fig. 1. In Table 2 the calculated values are shown of the attenuation coefficient K, KA, and i for
m=1.8—i10~%, m = 1,8—i107%, and m = 1,8—i107% Itcanbe seenfromthetable thatif the condition (4) is
valid, then the varying of % even by two orders hardly results in any change in ¢ for fixed p. For higher p the
deviation a(n) from the mean value declines, as shown in Fig. 1.

3. The computation results of the alumina spectral emissivity for t =1200°C and t =1700°C and the
particle diameters varying from 0.1 to 1 mm are shown in Fig. 2. The calculations were carried out by using
(7) and Fig. 1. By employing the results obtained by the Mie theory one obtained i = 0.76 and the dimension-~
less attenuation coefficient K = 2 for coarse and almost-transparent particles of corundum. The strongly se-
lective character of radiation of the corundum bed is clearly seen in the diagram. '

InFig, 3 the values of the integral emissivity € are shown versusthe particlediameter, The value € was
computed from the spectral emissivity by integrating over the spectrum and using the quadrature formula with the
Planck weighting function {10] withthreenodes. The integral emissivity increases with the particle diameter, The
latter was confirmed experimentally for theboilingbed [11]. Ford > 250 the growth of € with increasing d is
slight, The integral emissivity reaches its minimum at a temperature of approximately 1500°C. The increase
of € with t increasing is explained by the growth of the absorption coefficient » with t increasing. The growth
of £ with t decreasing for t < 1500°C is due to the Wien law and the specific spectral dependence of emissivity.
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Fig. 2. Spectral emissivity of an alumina-particle bed for: a) t =
1200°C; b) t =1700°C. A, u.
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Fig. 3. Integral emissivity of an alumina-particle
bed versus particle diameter d, mm.

The results obtained here may be applied in the computations of radiative heat exchange in a high-temper-
ature boiling bed.

NOTATION

r, particle radius; A, radiation wavelength; o, particle-size parameter; e;, spectral emissivity; v,
scattering coefficient to attenuation coefficient ratio; [, mean cosine of scattering angle at elementary scatter-
ing; n, refraction coefficient; %, absorption coefficient; Kp , dimensionless absorption coefficient; K, dimen-
sionless attenuation coefficient; m, complex-valued refraction index; t, temperature, °C; d, particle diameter;
€, integral emigssivity.
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